3.562 \(\int \frac{\sec ^3(c+d x)}{(a+b \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=91 \[ \frac{a \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{b^2 d \sqrt{a^2+b^2}}-\frac{\sec (c+d x)}{b d (a+b \tan (c+d x))}+\frac{\tanh ^{-1}(\sin (c+d x))}{b^2 d} \]

[Out]

ArcTanh[Sin[c + d*x]]/(b^2*d) + (a*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]])/(b^2*Sqrt[a^2 +
 b^2]*d) - Sec[c + d*x]/(b*d*(a + b*Tan[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.107103, antiderivative size = 132, normalized size of antiderivative = 1.45, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3512, 733, 844, 215, 725, 206} \[ \frac{a \sec (c+d x) \tanh ^{-1}\left (\frac{b-a \tan (c+d x)}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right )}{b^2 d \sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}-\frac{\sec (c+d x)}{b d (a+b \tan (c+d x))}+\frac{\sec (c+d x) \sinh ^{-1}(\tan (c+d x))}{b^2 d \sqrt{\sec ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + b*Tan[c + d*x])^2,x]

[Out]

(ArcSinh[Tan[c + d*x]]*Sec[c + d*x])/(b^2*d*Sqrt[Sec[c + d*x]^2]) + (a*ArcTanh[(b - a*Tan[c + d*x])/(Sqrt[a^2
+ b^2]*Sqrt[Sec[c + d*x]^2])]*Sec[c + d*x])/(b^2*Sqrt[a^2 + b^2]*d*Sqrt[Sec[c + d*x]^2]) - Sec[c + d*x]/(b*d*(
a + b*Tan[c + d*x]))

Rule 3512

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(d^(2
*IntPart[m/2])*(d*Sec[e + f*x])^(2*FracPart[m/2]))/(b*f*(Sec[e + f*x]^2)^FracPart[m/2]), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 1)), x] - Dist[(2*c*p)/(e*(m + 1)), Int[x*(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c,
 d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m +
 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{(a+b \tan (c+d x))^2} \, dx &=\frac{\sec (c+d x) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x^2}{b^2}}}{(a+x)^2} \, dx,x,b \tan (c+d x)\right )}{b d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{\sec (c+d x)}{b d (a+b \tan (c+d x))}+\frac{\sec (c+d x) \operatorname{Subst}\left (\int \frac{x}{(a+x) \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b^3 d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{\sec (c+d x)}{b d (a+b \tan (c+d x))}+\frac{\sec (c+d x) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b^3 d \sqrt{\sec ^2(c+d x)}}-\frac{(a \sec (c+d x)) \operatorname{Subst}\left (\int \frac{1}{(a+x) \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b^3 d \sqrt{\sec ^2(c+d x)}}\\ &=\frac{\sinh ^{-1}(\tan (c+d x)) \sec (c+d x)}{b^2 d \sqrt{\sec ^2(c+d x)}}-\frac{\sec (c+d x)}{b d (a+b \tan (c+d x))}+\frac{(a \sec (c+d x)) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a^2}{b^2}-x^2} \, dx,x,\frac{1-\frac{a \tan (c+d x)}{b}}{\sqrt{\sec ^2(c+d x)}}\right )}{b^3 d \sqrt{\sec ^2(c+d x)}}\\ &=\frac{\sinh ^{-1}(\tan (c+d x)) \sec (c+d x)}{b^2 d \sqrt{\sec ^2(c+d x)}}+\frac{a \tanh ^{-1}\left (\frac{b \left (1-\frac{a \tan (c+d x)}{b}\right )}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right ) \sec (c+d x)}{b^2 \sqrt{a^2+b^2} d \sqrt{\sec ^2(c+d x)}}-\frac{\sec (c+d x)}{b d (a+b \tan (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.748003, size = 120, normalized size = 1.32 \[ -\frac{\frac{2 a \tanh ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )-b}{\sqrt{a^2+b^2}}\right )}{\sqrt{a^2+b^2}}+\frac{b \sec (c+d x)}{a+b \tan (c+d x)}+\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + b*Tan[c + d*x])^2,x]

[Out]

-(((2*a*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]])/Sqrt[a^2 + b^2] + Log[Cos[(c + d*x)/2] - Sin[(c +
d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (b*Sec[c + d*x])/(a + b*Tan[c + d*x]))/(b^2*d))

________________________________________________________________________________________

Maple [A]  time = 0.102, size = 174, normalized size = 1.9 \begin{align*}{\frac{1}{{b}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+2\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) }{d \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\,\tan \left ( 1/2\,dx+c/2 \right ) b-a \right ) a}}+2\,{\frac{1}{bd \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\,\tan \left ( 1/2\,dx+c/2 \right ) b-a \right ) }}-2\,{\frac{a}{{b}^{2}d\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }-{\frac{1}{{b}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+b*tan(d*x+c))^2,x)

[Out]

1/d/b^2*ln(tan(1/2*d*x+1/2*c)+1)+2/d/(tan(1/2*d*x+1/2*c)^2*a-2*tan(1/2*d*x+1/2*c)*b-a)/a*tan(1/2*d*x+1/2*c)+2/
d/b/(tan(1/2*d*x+1/2*c)^2*a-2*tan(1/2*d*x+1/2*c)*b-a)-2/d/b^2*a/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1
/2*c)-2*b)/(a^2+b^2)^(1/2))-1/d/b^2*ln(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.31909, size = 699, normalized size = 7.68 \begin{align*} -\frac{2 \, a^{2} b + 2 \, b^{3} -{\left (a^{2} \cos \left (d x + c\right ) + a b \sin \left (d x + c\right )\right )} \sqrt{a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} - 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) -{\left ({\left (a^{3} + a b^{2}\right )} \cos \left (d x + c\right ) +{\left (a^{2} b + b^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left ({\left (a^{3} + a b^{2}\right )} \cos \left (d x + c\right ) +{\left (a^{2} b + b^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{2 \,{\left ({\left (a^{3} b^{2} + a b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{2} b^{3} + b^{5}\right )} d \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/2*(2*a^2*b + 2*b^3 - (a^2*cos(d*x + c) + a*b*sin(d*x + c))*sqrt(a^2 + b^2)*log((2*a*b*cos(d*x + c)*sin(d*x
+ c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 - 2*sqrt(a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x + c)))/(2*a*b*
cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)) - ((a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*s
in(d*x + c))*log(sin(d*x + c) + 1) + ((a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))*log(-sin(d*x +
c) + 1))/((a^3*b^2 + a*b^4)*d*cos(d*x + c) + (a^2*b^3 + b^5)*d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (c + d x \right )}}{\left (a + b \tan{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+b*tan(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**3/(a + b*tan(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.65698, size = 224, normalized size = 2.46 \begin{align*} \frac{\frac{a \log \left (\frac{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} b^{2}} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} + \frac{2 \,{\left (b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a\right )} a b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

(a*log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(a^2
 + b^2)))/(sqrt(a^2 + b^2)*b^2) + log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^2 - log(abs(tan(1/2*d*x + 1/2*c) - 1))/
b^2 + 2*(b*tan(1/2*d*x + 1/2*c) + a)/((a*tan(1/2*d*x + 1/2*c)^2 - 2*b*tan(1/2*d*x + 1/2*c) - a)*a*b))/d